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1. Introduction

The duality between string and field theory, in the framework originated by the AdS/CFT

correspondence [1 – 3], provides powerful tools to investigate the strong coupling dynamics

of the latter. The original formulation of the correspondence concerns an N = 4 supersym-

metric field theory in four dimensions. Lowering this high degree of symmetry has been

the goal of much recent research (see [4] for some nice reviews on the subject). Besides

obvious phenomenological reasons, reducing the symmetry is also important because it

gives a better understanding of the duality when it is applied to the description of truly

dynamical processes, going beyond the strong constraints imposed by the symmetries.

In view of their rich and quite well understood dynamics, N = 1 supersymmetric Yang-

Mills (SYM) theories provide perhaps the best example to be studied in this perspective.

One of their nice properties is that, sometimes, their infrared strong coupling properties can

be encoded in a superpotential sourced by non-perturbative effects. The non-perturbative
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generation of a superpotential makes them appealing also for cosmological purposes and

the related moduli stabilization problem [5 – 7]. It is in general important to find examples

where such superpotential can be directly calculated.

In this paper we find such a concrete example by studying the string dual of N = 1

SYM on the cylinder (by cylinder we mean the flat space R
1,2 × S1, i.e. four-dimensional

Minkowski space with one spatial direction compactified). Besides improving the under-

standing of the string theoretic description of non-perturbative gauge phenomena, this

cylindrical geometry may have interesting cosmological applications. From the field theory

point of view, the generation of a superpotential in this geometry is nicely described in [8].

There are two well known N = 1 dual supergravity solutions we can start from. They

are the Klebanov-Strassler (KS) [9] and the Maldacena-Núñez (MN) [10] ones, respectively

related to the field theories living on the worldvolume of fractional and wrapped Dp-branes.

Our analysis can start from both solutions. We decide to describe more carefully how

things work in the MN set-up. In that case the configurations sourcing the superpotential

are wrapped branes and their microscopic description, at least in certain limits, is better

understood than the one of fractional branes in a conifold background. However, we sketch

also how things work in the KS case, which is more relevant in the cosmological set-up [6].

The MN solution describes the infrared (IR) of N = 1 pure SYM theory. Its ultraviolet

(UV) completion is instead related to little string theory and the two regimes of the theory

are not smoothly connected in terms of a unique solution (they are S-dual to each other).

The source of this problem is the bad asymptotic behavior of the dilaton. On the gauge

theory side this reflects the difficulties of joining the weak coupling with the strong coupling

regime of confining SYM theory in a unifying picture.

On the field theory side it is known that, to some extent, such an interpolating picture

exists if we compactify one spatial dimension and consider SYM on R
1,2×S1 [8]. In this case

the non-perturbative physics is much better understood and typically infrared phenomena

(such as gaugino condensation) have a semiclassical exhaustive description. It is indeed

possible to explicitly write a non-perturbatively generated superpotential that leads to a

mass gap (providing a mass for the “magnetic” photons) and gaugino condensation.

To investigate SYM theory on the cylinder, we look for the proper modification of the

MN background. When one deals with compact directions (as in the cylinder geometry

we are considering here) the natural thing to do is T-duality. We then T-dualize the IIB

MN solution along one of its flat spatial directions and consider the corresponding type IIA

solution. This could be enough to study SYM on the cylinder, but the dilaton still diverges.

As it is well known, this is a sign of the opening of the eleventh dimension. We then uplift

the solution to 11 dimensions and find a globally well behaved solution. In this set-up SYM

theory is the theory living on the worldvolume of N M5-branes that wrap a three cycle with

topology S2 × S1. Their backreaction generates the dual background. Being this solution

related to the MN one by dualities, it could look as completely equivalent to the latter.

But, as we show in this paper, this is not the case and the eleven dimensional solution

encodes in a non-trivial way the information that the dual SYM theory has one compact

spatial direction. At the level of lower dimensional gauged supergravity, the solution we

discuss is related to the six dimensional F (4) gauged supergravity discussed in [11].
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In principle the solution we build in the way sketched above is just valid to describe

the infrared of N = 1 SYM. Perhaps interestingly, we find that also its UV description

(related to NS5-branes in type IIB) corresponds to the same 11-dimensional solution. We

have then a unique picture connecting the UV and the IR of the gauge theory in terms of

the worldvolume theory of N M5-branes in the background we find.

On this solution we will perform various gauge theory computations and we will find

perfect agreement with expectations. Both for the perturbative and non-perturbative cal-

culations, it will be crucial to use the M5 and M2 worldvolume actions. In particular, we

find that in this set-up the theory is naturally formulated in terms of the scalar field dual

to the three dimensional vector and such dualization has not to be imposed, as it is usually

done, by hand. Such degree of freedom will be related to the “self-dual” three form living

on the M5 worldvolume (to which the boundary of the M2-branes couples).

Using the M5 worldvolume theory, we compute the tension of a generic (p, q) string

in this cylindrical geometry. Qualitatively (with very small quantitative difference), we

get the same result of [12]. Thus, the expectation that these objects are good candidates

for cosmic strings in the brane inflationary scenario [7, 13] is confirmed also in the case

with one compact dimension. Moreover, taking the compact dimension to be of very

small size, we deal effectively with three dimensional field theory. We find that for this

three dimensional field theory, the formula for the string tension is inherited from its four

dimensional cousin without any modification. This does not agree with the near quadratic

scaling hypothesis [14, 15] for the confining string tension in 2+1 dimensional field theory. It

seems rather to agree with the predictions coming from the Maldacena-Nastase solution [16]

(see also [17]).

The main novelty perhaps is that in this solution new kinds of instantons (the so-

called“fractional instantons”) have a natural description. They are responsible for the

generation of the non-perturbative superpotential that we compute. In the M-theory de-

scription, they correspond to Euclidean M2 branes wrapping a 3-cycle. Precisely two

zero-modes are left by such configurations. This is the right number to generate a non-

perturbative contribution to the superpotential [18].

The paper is organized as follows. In section 2 we write the type IIA supergravity

solution relevant to study SYM theory on the cilinder (R1,2 × S1). In section 3 we uplift

the solution to 11 dimensions, finding a more satisfying picture that smoothly interpolates

between the UV and the IR of SYM. In this set-up we discuss the gauge-string dictionary.

In section 4 we identify the three dimensional scalar dual to the vector field, relating it to

a two-form degree of freedom living on the M5 worldvolume. This identification applies

to more general cases than the one considered here. In section 5 we move to discuss

the appearance of fractional instantons. They allow us to compute the non-perturbative

superpotential driving gaugino condensation. In section 6 we compute the (p, q) string

tension. Section 7 is dedicated to generalize our finding to the KS solution. We finally

write our conclusions and comments on possible speculations. In appendix A we discuss the

general identification of the scalar field living in the flat directions of the M5 worldvolume

with topology R
1,2×S1×S2. As a concrete example, we recover the perturbative quantum

metric of the moduli space of N = 4 three-dimensional SYM theory, the same discussed
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in [19] in the type IIA set-up. In appendix B we show how the BPS equations of eleven

dimensional supergravity are solved by our solution. Appendix C is devoted to a K-

symmetry analysis.

2. T-dual of the Maldacena-Núñez solution

The Maldacena-Nuñez background is a solution of the equations of motion of type IIB

supergravity which preserves four supersymmetries. The ten dimensional metric in string

frame is:

ds2
10 = gsα

′Neφ

[

dx2
1,3

gsα′N
+ e2h(dθ2

1 + sin2 θ1dφ2
1) + dρ2 +

1

4

∑

i

(wi − Ai)2
]

, (2.1)

where φ is the dilaton, h is a function which depends on the dimensionless radial coordinate

ρ, the one-forms Ai (i = 1, 2, 3) are

A1 = −a(ρ)dθ1 , A2 = a(ρ) sin θ1dφ1 , A3 = − cos θ1dφ1 , (2.2)

and the wi’s are su(2) left-invariant one-forms, satisfying dwi = −1
2 ǫijk wj ∧wk. The wi’s

parameterize a three-sphere and can be represented in terms of three angles φ2, θ2 and ψ:

w1 = cos ψdθ2 + sin ψ sin θ2dφ2 ,

w2 = − sin ψdθ2 + cos ψ sin θ2dφ2 ,

w3 = dψ + cos θ2dφ2 . (2.3)

The angles θi, φi and ψ take values in the intervals θi ∈ [0, π], φi ∈ [0, 2π) and ψ ∈ [0, 4π).

The functions a(ρ), h(ρ) and the dilaton φ are the following ones:

a(ρ) =
2ρ

sinh 2ρ
,

e2h = ρ coth 2ρ − ρ2

sinh2 2ρ
− 1

4
,

e−2φ = e−2φ0
2eh

sinh 2ρ
. (2.4)

This solution of type IIB supergravity also includes a Ramond-Ramond three-form

F(3) given by

F(3)

gsα′N
= −1

4
( w1 − A1 ) ∧ ( w2 − A2 ) ∧ (w3 − A3 ) +

1

4

∑

i

F i ∧ (wi − Ai ) , (2.5)

where F i is the field strength of the su(2) gauge field Ai, defined as F i = dAi + 1
2ǫijk Aj ∧

Ak.

We perform T-duality along the Minkowski coordinate x3 and call z to the T-dual coor-

dinate. The formulas relating Type IIB and Type IIA theories via T-duality are given

in [20]. We summarise them here for convenience. We denote as Gµν the components of
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the metric in Type IIA and as Jµν the components of the metric in Type IIB. C(n) denotes

a RR n-form potential. Then,

Gzz =
1

Jx3x3

,

Gµν = Jµν µ, ν 6= x3,

C(3)
zµν = C(2)

µν ,

2φa = φb ≡ φ, (2.6)

where φa (φb) is the dilaton in Type IIA (IIB) supergravity and C(2) verifies the equation

dC(2) = F(3). One can integrate this equation obtaining:

C(2)

gsα′N
=

1

4

[

ψ(sin θ1dθ1 ∧ dφ1 − sin θ2dθ2 ∧ dφ2) −

cos θ1 cos θ2dφ1 ∧ dφ2 − a(dθ1 ∧ ω1 − sin θ1dφ1 ∧ ω2)
]

. (2.7)

Therefore the Type IIA background we obtain in this way is (in string frame):

ds2
10 =gsα

′Ne2φa

[

dx2
1,2

gsα′N
+e2h(dθ2

1+sin2 θ1dφ2
1)+dρ2+

1

4

∑

i

(wi−Ai)2
]

+e−2φadz2, (2.8)

where φa = φ
2 and the RR potential C(3) = C(2) ∧ dz satisfies the equation

dC(3) = F(3) ∧ dz = F(4). (2.9)

The coordinate z is periodic with period 2πR and we choose for convenience R to be the

self-dual radius R =
√

α′. We will restore the R dependence when needed.

This solution corresponds to having N D4-branes wrapped along S2 and smeared in

the z direction. The Yang-Mills dual theory is a three-dimensional N = 2 supersymmetric

field theory with gauge group SU(N). It is obtained via compactification from the six-

dimensional theory living on the D4 worldvolumes plus the z-direction along which the

branes are smeared. The (twisted) compactification on the S2 is obviously the same as in

the MN case. Along the S1 we can think of a standard compactification. Accordingly, the

gauge potential Aa
z (a = 1 . . . N − 1 belonging to the Cartan sub-algebra of SU(N)) gives

rise to N − 1 massless scalars. This is an N = 1 four-dimensional theory on the “cylinder”

(R1,2 × S1).

2.1 Gauge theory analysis

To investigate the Yang-Mills theory dual to this gravitational background we start making

a D4 probe computation. The D4 worldvolume action is:

Sprobe = −τ4

∫

d5ξe−φa
√

−det[G + 2πα′F ] + τ4 2πα′

∫

C3 ∧ F, (2.10)

where

τ4 =
1

(2πα′)24π2
√

α′gs

, (2.11)
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F is a worldvolume gauge field and all bulk fields are understood to be pullbacks onto the

brane worldvolume which is parameterized by ξ = {x0, x1, x2,Ω2}, where Ω2 is the volume

element of the cycle on which the brane is wrapped [21]:

Ω2 : θ1 = θ2, φ1 = 2π − φ2 . (2.12)

Identifying the compact dimensionless transverse scalar field b via

z = 2π
√

α′ b, (2.13)

and neglecting the ρ-dependent term (signaling that the no-force condition is not fulfilled

in this case), we can expand the action (2.10) in powers of α′. Substituting in it the

solution (2.7), (2.8), one gets:

S = −
∫

d3ξ
1

g2
Y M3

[

1

2α′
∂ab∂

ab+
1

4
FabF

ab

]

+
1

2
N

(ψ+a(ρ) sin ψ)

4π

∫

d3ξǫabc(∂ab)Fbc, (2.14)

where:
1

g2
Y M3

=
N

16π2
Y (ρ) (2π

√
α′), with Y (ρ) = 4ρ tanh ρ. (2.15)

If we remember also that, according to [22], in the four dimensional theory there is a

non-trivial topological term proportional to the θYM-angle defined as1

θYM = − N(ψ + a(ρ) sin ψ), (2.16)

we see that the action (2.14) corresponds to four dimensional gauge theory compactified

on a spatial S1.

A better formulation of such theory is given in terms of the scalar dual to the vector

field. To introduce it, we add to the action (2.10) the term

−
∫

ΣdF, (2.17)

where the auxiliary field Σ acts as a Lagrange multiplier for the Bianchi identity constraint.

Due to the Dirac quantization condition

q =
1

8π

∫

d3ξǫabc∂aFbc ∈ Z , (2.18)

the auxiliary field Σ is periodic, with period

TΣ =
1

2
. (2.19)

A (magnetic) dual description of such theory can be obtained by promoting Σ to a

dynamical field [23] and integrating out the Abelian field strength F via its equation of

motion. One gets:

S = −1

2

∫

d3ξ

[

1

g2
Y M3α

′
∂ab∂

ab+g2
Y M3

(

N(ψ+a(ρ) sin ψ)

4π
∂b+∂Σ

)2]

, (2.20)

1Here there is a factor of 2 of difference with respect to [22] because of the definition of the cycle Ω2.
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or using (2.16), one can write (2.20) as

S = −1

2

∫

d3ξ

[

2π

g2
Y M4R

∂ab∂
ab+

g2
Y M4

2πR

(

∂Σ− θYM

4π
∂b

)2
]

, (2.21)

where

1

g2
Y M4

=
N

16π2
Y (ρ). (2.22)

Notice that equation (2.21) looks pretty similar to eq. (3.7) of [24] where this theory has

first been considered.

3. Eleven dimensional solution dual to Maldacena-Núñez

In the previous section we have given a picture of the Yang-Mills theory on the cylinder in

the type IIA set-up. One unsatisfactory aspect could be the bad behavior of the dilaton at

large values of the radial coordinate. As it is well known, this signals the decompactification

of the eleventh dimension of M-theory. Under this perspective, it is quite natural to up-lift

the solution to eleven dimensional supergravity. One gets:

ds2
11 = e4/3φa

[

dx2
1,2 + α′gsNe2h(dθ2

1 + sin2 θ1dφ2
1) + α′gsNdρ2 +

α′gsN

4

∑

i

(ωi − Ai)2

]

+ e4/3φady2 + e−8/3φadz2, (3.1)

C(3) = C(2) ∧ dz,

where C(3) is the magnetic potential under which the M5-branes are charged and the new

eleventh coordinate y is periodic, with period 2πgs

√
α′.

This solution corresponds to have N M5 branes wrapping, besides the S2, the y circle.

The gauge theory we are describing corresponds thus to the worldvolume theory of such

M5-branes. We begin noticing an intriguing property of such description. Starting from

eleven dimensions, for small ρ it is fine to go down to IIA along the y-circle: it has small

radius and the IIA theory is well behaved. We get D4-branes and the proper field theory

description we have given in the previous section.

For big ρ instead the radius of the y-circle becomes big. If we insist on making the

dimensional reduction along that circle, the IIA dilaton diverges. But, as it is clear from

eq. (3.1), the radius of the z-circle becomes small in the large ρ limit: it is now possible

to reduce along z and get a well behaved IIA solution in terms of NS5-branes. The same

happens in the Type IIB MN solution, where for small ρ one has a well behaved solution

in terms of D5 branes, while for big ρ the dilaton diverges and one needs to S-dualize the

background and get instead NS5 branes.

We see here as the eleven dimensional picture gives a unifying picture of this phe-

nomenon in terms of a unique theory on the M5-brane worldvolume. Schematically we can

summarise the solution in the following table:
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T1 ŨP

IIB −→ IIA −→ 11D

D5 D4 M5

S l ||| R
1,2 × S1 × S̃1 × CY3

T̃1 UP

IIB −→ IIA −→ 11D

NS5 NS5 M5

We move on now to investigate this wrapped M5 worldvolume theory.

4. M5-brane worldvolume theory

The analysis we are going to do in this section applies to more general cases than the

one under consideration. We perform it in the case that the M5 worldvolume geometry

is of the form R
1,2 × S1 × Ω2, where Ω2 is a two dimensional compact manifold whose

volume element is V2dΩ2 (
∫

dΩ2 = 4π). S1 is a circle of radius gs

√
α′. Standard Kaluza-

Klein reduction on the internal three dimensional manifold S = S1 × Ω2 gives rise to

the three dimensional gauge theory. To study such theory we need to investigate the M5

worldvolume dynamics. Our main tool will be the (covariant) worldvolume action written

by Pasti, Sorokin and Tonin in [25]. In such formalism (usually called PST formalism),

it is better if the internal manifold contains a factorized circle (or more generally its first

Betti number should be different from zero).2 Even if there are well known problems

referred to a possible quantization of the M5-brane action [26](problems shared by the

PST formalism with many others), here we are just interested in analyzing the classical

equations of motion. To this aim we can safely use the PST formalism.

The M5 worldvolume PST action is [25]:

S = TM5

∫

d6ξ

(

−
√

−det(g + H̃)+

√−detg

4∂a · ∂a
∂ia(⋆H)ijkHjkl∂

la

)

+
TM5

2

∫

F ∧ C(3), (4.1)

where g is the pullback of the eleven dimensional background metric, a is the PST scalar

and the three-form H is defined as

H = F − C(3), (4.2)

where F is a worldvolume three-form field strength (F = dA(2)). The two-form H̃ is defined

as

H̃ ij =
1

3!
√−detg

1
√

−(∂a)2
ǫijklmn∂kaHlmn, (4.3)

and the M5-brane tension is given by

TM5 =
1

(2π)5g2
sα

′3
. (4.4)

2This is related to the fact that the PST scalar is naturally an angular variable.
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Specifying to our case, we want to implement the KK reduction on the internal manifold

S. We need to do a gauge fixing for the PST scalar. The most natural one is

a = y, (4.5)

where y ∈ [0, 2π
√

α′gs] parameterizes the S1. Consistently with this choice, we consider

the following two-form worldvolume potential A(2):

A(2)

(2π)2gs
= α′ y

2πgs

1

2
Fabdxa ∧ dxb + α′ 3

2 ΣdΩ2, (4.6)

where the indices a, b span the three dimensional Minkowski space (a, b = 0, 1, 2), Fab =

∂aCb−∂bCa, Ca is a three dimensional vector and Σ is a dimensionless scalar field depending

on the coordinates xa. Even if the properties of the quantum M5-brane theory are subtle,

it is quite natural to quantize the possible variations of the two-form integrated on the

(contractible) two-cycle. One way to see this is to use dualities that relate the two form

A(2) to the NS-NS B(2) field. The relevant quantity which is allowed to change by integer

units is:

1

(2π)3gsα′3/2

∫

A(2). (4.7)

The field Σ is thus naturally periodic. With our normalizations (4.6) its period is:

TΣ =
1

2
. (4.8)

Inserting the ansatz (4.6) in (4.1) one gets the three dimensional action:

S =−8π2gsα
′1/2TM5

[

V2

∫

d1,2x

√

− det(g+H̃)ab+
(2π)3gsα

′5/2

4

∫

d1,2xǫabcFab∂cΣ

]

, (4.9)

and it is straightforward to see that

det(g + H̃)ab = det(g)ab

(

1 +
1

4
det(g−1)ab

(2π)4g2
sα

′3

V 2
2

∂cΣ∂cΣ

)

. (4.10)

Expanding the square root in powers of α′ and discarding the constant term, we get the

three dimensional flat spacetime action:

S = −
[

1

2

2π
√

α′gs

V2

∫

d1,2x∂cΣ∂cΣ +
1

2

∫

d1,2xǫabcFab∂cΣ

]

. (4.11)

Thanks to the second term in (4.11) Σ is naturally interpreted as the scalar field dual to

the vector one. We can interprete the vector field Ca as a Lagrange multiplier and to vary

with respect to it, enforcing the Bianchi identity constraint on Σ. Otherwise we can vary

with respect to the vector ∂aΣ and get the standard action in terms of the vector field Ca.

As a result, it is quite obvious to relate the volume V2 of the two cycle to the square of the

inverse of the three dimensional gauge coupling constant in the following way:

g2
Y M3 =

2π
√

α′gs

V2
. (4.12)
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It is easy now to recognize (4.11) as the standard free Maxwell action in three dimensions.

Notice that the dualization term, which allows us to identify the scalar Σ as the dual to

the vector field, here it is contained automatically in the worldvolume theory. Such theory

is moreover automatically written in terms of the scalar Σ, the kinetic term for this field

appearing in (4.11).

As already stressed, these results are quite general for geometries of the type R
1,2 ×

S1 × Ω2. To test this generality, in appendix A we apply them to the case of N = 4

supersymmetric (8 real supercharges) three dimensional Yang-Mills theory. This theory

has a nice geometric description in terms of an Hyper-Kähler moduli space (a possible

generalization of the Atiya-Hitchin manifold). We refer the reader to [24, 27] for the

details. The explicit gravity dual description has instead been given in [19] in the type

IIA theory. Basing on that paper we discuss the eleven dimensional supergravity dual and

show how the proper (perturbative) space emerges naturally in this case.

5. N = 1 super Yang-Mills on the cylinder

We are now ready to interpret the eleven dimensional solution given in section 3 from

the field theory point of view. This is a N = 2 supersymmetric field theory in three

dimensions obtained from a circle reduction of N = 1 (pure) super Yang-Mills in four

dimensions. Being the M5-branes smeared in the z-circle, the gauge group is U(1)N−1

(the degree of freedom corresponding to the center of mass of the system is decoupled).

Applying the analysis we described in the previous section, namely making an M5-probe

computation and expanding the result in powers of α′, for the i -th gauge group we get:

Si = −1

2

∫

d3ξ

[

2π

g2
Y M4R

∂abi ∂
abi +

g2
Y M4

2πR
∂aΣi∂

aΣi

]

, (5.1)

where we omit the dualization term and restrict ourselves to the case θYM = 0 (see

eq. (2.21)). The periodic scalars bi correspond to fluctuations in the z direction and are

defined as in (2.13). Redefining the field Σi as

γi =
g2
YM

2π
Σi, (5.2)

it is easy to write the action in terms of the holomorphic field

Ψi = bi + iγi (5.3)

simply as:

Si = − π

g2
YMR

∫

d3x ∂aΨi∂
aΨi . (5.4)

From (4.8), (5.2) we can read off the period of γi:

Tγ =
g2
YM

4π
. (5.5)
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We look now for some M-brane configuration generating a superpotential. For this

to happen one has to check that in presence of such M-branes there are two fermionic

zero-modes [18]. The superpotential they generate is [18]:

W ∼ µ3
∑

i

ei SMi , (5.6)

where µ is a dimensionfull scale (with inverse length dimension) related to the value of the

radial variable at which the computation is made (it is the same at which the actions SMi

are evaluated).

To have some intuition on what are these configurations, we start noticing that an

instanton configuration is an (Euclidean) M2-brane wrapped along Ω2 (defined in (2.12))

and the entire z circle. In presence of such configuration, from the index theorem, we

expect to have 2N fermionic zero-modes. Before doing the zero-mode counting, we have

to remember that along the z-circle there are N M5-branes. It is well known that an

M2-brane can end on an M5-one. Analogously, the instantonic M2-brane can open itself

and end on one of the N M5s. We are thus led to consider N objects that are more

basic than the instantonic M2-brane and can be seen as its constituents. These objects

are the N M2-branes stretching between two consecutive M5-branes. In this way we get

a picture very close to the field theoretical one of the instanton as being composed by

more fundamental instanton partons [28], the so-called ”fractional instantons” (our open

M2-branes).

For the Kappa-symmetry analysis of this kind of configurations, we refer the reader to

appendix C. There, we show that half of the supersymmetries of the background are pre-

served (in the proper limit) by such M2-branes. This implies that two (real) supersymme-

tries are broken and, consequently, there are two fermionic zero modes in this background:

they are the goldstinos of the broken supersymmetries. The equations of motion for the

fermionic fluctuations (up to second order in fermions) in an arbitrary bosonic background

have been written in [29]. As a direct inspection of such equations shows, the presence of

other zero modes is unlikely. Therefore, we assume that in this background there are just

the two goldstinos zero modes we discussed here.

5.1 The non-perturbative superpotential

To proceed further and write explicitly the superpotential generated by these M2-branes

via the formula (5.6), we need the form of their worldvolume action. As we are considering

open M2-branes stretching between two M5s, we have to pay attention to the fact that on

the M5-brane worldvolume, the boundary of an M2-brane (a string) sources a potential.

This is precisely the A(2) M5 worldvolume two-form potential. The coupling of open M2 to

it is easily evaluated [30] (perhaps the best way of seeing it is by requiring gauge invariance

for the C(3) potential). The resulting (open) M2 worldvolume action is:

iSM2i
= −TM2

∫

d3ξ
√

det g + i TM2

∫

(

C(3) − F
)

, (5.7)

where

TM2 =
1

(2π)2gsα′3/2
.
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Out of the N M5-branes we need to decouple the center of mass. To this aim, we

consider one (non dynamical) M5-brane fixed at z = 0. For the i -th M2-brane (extending

between the (i − 1) and the i M5 ones), we can evaluate the action (5.7):

iSM2i
= − 8π2

g2
YM

[

(bi−bi−1)+i
g2
YM

2π
(Σi−Σi−1)

]

= − 8π2

g2
YM

(Ψi−Ψi−1)=− 8π2

g2
YM

(∆Ψ)i, (5.8)

where we make the computation at θYM = 0 and the definitions (2.13), (4.6), (5.3) are used.

We must pay special attention to the N -th M2-brane, the one extending between the N −1

M5-brane and the non dynamical one. In this case its action is not independent of the

others, but it is given by the difference between the instantonic one (the one corresponding

to the M2 extending along the entire circle z) and all the others N − 1. We call it Kaluza-

Klein monopole (as it has been named the analogous configuration in field theory in [8]).

We easily compute its action3 and find perfect agreement with field theory (see eq. (2.10)

of [8]):

SKK = − 8π2

g2
YM

R√
α′

+

N−1
∑

i=1

8π2

g2
YM

(∆Ψ)i. (5.9)

Putting all together and redefining (∆Ψ)i as Φi, we get the superpotential (5.6):

W = M3

(

N−1
∑

i=1

e
− 8π2

g2

YM

Φi

+ e
− 8π2

g2

YM

R√
α′ +

PN−1

i=1

8π2

g2

YM

Φi

)

. (5.10)

This nicely reproduces the field theory one [8]. By extremizing it we get the M-branes

equilibrium configurations:

〈Φi〉 =
R

N
√

α′
+ i

g2

4π

k

N
k ∈ Z ,

〈W 〉 = NΛ3, (5.11)

where k is defined modulo N (see (5.5)) and labels the N vacua resulting from the breaking

of the Z2N symmetry. These vacua are related to the ones of gaugino condensation. Domain

walls naturally follow. Via this superpotential, the magnetic photons do get a mass. This

is a signal of confinement.

5.2 U(1)R anomaly

Special attention must be paid to analyze the U(1)R symmetry of the model. This is a

proper R-symmetry under which also the θ’s fermionic integration variables transform. It

acts in the following way:

θ → eiαθ , χi → eiαχi, , χ̄i → e−iαχ̄i, (5.12)

where χi are the fermions in the U(1)i vector multiplet.

3We call it SKK but it has not to be confused with the action for the KK-modes coming from the S2

worldvolume compactification.
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In standard N = 2 three dimensional theory this symmetry is not anomalous, as it is a

subgroup of a simple group, SU(2)R. The way the symmetry is not violated at low energy

is assigning U(1)R charge transformation to the magnetic photons [31]:

γi → γi − g2

4π2
α for all i . (5.13)

However, we are considering a slightly different theory, i.e. the one obtained by Kaluza-

Klein compactification on a circle. In our case the SU(2)R is explicitly broken by the circle

and the U(1)R symmetry is anomalous. As it is clear from its membrane origin we have just

described, the way the theory knows about the extra compact dimension (responsible for

the anomaly) is via the Kaluza-Klein monopole. This is the non-perturbative configuration

generating the last term in the superpotential (5.10). If we continue to pretend that the

superpotential (5.10) has charge two under U(1)R, this term causes the expected anomaly:

U(1)R is no longer a symmetry but just its subgroup Z2N is preserved. Notice that the

first term in (5.10) has the proper charge without implying any anomaly, being the corre-

sponding monopoles also present in the purely flat case. Eventually, in the vacua (5.11),

the photons condense spontaneously breaking the Z2N symmetry to Z2.

6. Dual configurations to effective strings

We move now to compute the tension of a generic (p, q) string. By (p, q) string we mean an

extended object with p units of fundamental string charge and q units of D1-brane charge.

The field theoretic interpretation of such object, which extends in two of the Minkowski

directions, is clear in the q = 0 case [32]: it is the confining p-sting (the string joining p

quarks to p anti-quarks). In the p = 0 case, its interpretation is clear in the KS solution,

where it corresponds to an axionic string [33]. In the MN background such BPS object

exists but its field theory interpretation is not well understood (no axionics strings are

supposed to be present in this case [33, 34]). A first attempt to understand their origin

could be to apply the formalism developed in [35] to see if they are related to a pure super

Yang-Mills effect or to a Kaluza-Klein one (we are thinking about the KK modes of the S2).

In the generic (p, q) case these objects, once the KS solution is embedded in a cosmological

(inflationary) scenario [13, 7], can look like cosmic strings [36], whose range of tension is

compatible with the current observational bounds [37].

To compute the tension of a (p, q) string, the relevant geometry is the one corresponding

to the deep IR of the field theory, i.e. at ρ = 0. Such geometry is R
1,2 ×S1 × S3 × S̃1 with

N units of G-form flux (G = dC3) through S1 × S3. We call S1 the circle paremeterized

by z and S̃1 the one paremeterized by y.

The M-theory description of a (p, q)-string is given in terms of a bound state of p M2-

branes extending along the coordinates x0, x1, y and other q M2-branes extending along

x0, x1, z. Also here the Myers effect takes place for the p M2-branes and they blow up into

a M5-brane with p units of worldvolume flux through S2 × S1 (S2 is the two-sphere inside

S3). In this set-up, the presence of the other q M2-branes corresponds to a (quantized)

electric flux in the x0, x1, z directions. We compute now the tension of this object by
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using the classical action plus a quantization condition on the worldvolume fluxes. This

computation is clearly related by a chain of dualities to the one made in [12].

The resulting M5-brane is parameterized by the following set of coordinates:

ξµ(µ = 0, . . . , 5) = (x0, x1, y, z, S2). (6.1)

The embedding we are interested in is at ρ = 0 where the remaining scalars do not play

any role, except for the S3 polar angle (call it ψ) that we assume to depend on the flat

coordinate x1, i.e. ψ = ψ(x1). Let ψ, θ̃ and φ̃ be the coordinates which parameterize the

3-sphere,4 with ψ the polar angle (0 < ψ ≤ π). The S3 line element dΩ2
3 can be decomposed

as:

dΩ2
3 = dψ2 + sin2 ψ dΩ2

2 . (6.2)

In terms of this new set of coordinates, the three-form C(3)(see eqs. (2.7) and (3.1)) is:

C(3)

α′gsN
= C(ψ) dΩ2 ∧ dz , (6.3)

where C(ψ) is

C(ψ) = ψ − 1

2
sin(2ψ). (6.4)

In order to capture flux and properly describe the Myers effect we switch on a world-

volume two-form A(2) such that

F = dA(2) = Fx0x1zdx0 ∧ dx1 ∧ dz + FzΩ2
dz ∧ dΩ2 . (6.5)

As discussed in section 4, the general expression for the action of a probe M5-brane in

the PST formalism is

S =TM5

∫

d6ξ

(

−
√

− det(g+H̃)+

√− det g

4∂a · ∂a
∂ia(⋆H)ijkHjkl∂

la

)

+TM5

∫
(

1

2
F ∧ C(3)

)

.

(6.6)

Analogously to what has been done in the computation of section 4, we make the gauge

choice a = y. The lagrangian density for this probe becomes:

L=−TM5(α
′gsN)e2φ0 sin θ̃

√

1+α′gsN(∂x1
ψ)2−F 2

x0x1z

√

sin4 ψ+

(

FzΩ2

α′gsN
−C(ψ)

)2

. (6.7)

The quantization condition that accounts for the Myers effect is:
∫

S1×S2

FzΩ2
=

2πp

TM2
, p ∈ Z . (6.8)

Now we need the quantization condition for the remaining component of the worldvolume

flux, Fx0x1z. It is clear from eq. (6.7) that

∂L
∂Fx0x1z

= const , (6.9)

4The M5-brane extends along the S2 parameterized by θ̃ and φ̃.
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and the constant can be determined by following the procedure explained in [38]. This

means that the quantization condition amounts to
∫

S̃1×S2

dΩ2dy
∂L

∂Fx0x1z
= q TM2 , q ∈ Z . (6.10)

This condition can be rewritten as:

Fx0x1z =

√

1 + α′gsN(∂x1
ψ)2

sin4 ψ + C2
p(θ) + e−4φ0 e( πq

gsN )2
e−2φ0

(

πq

gsN

)

, (6.11)

where we have used (6.8) and defined

Cp(ψ) = C(ψ) − π

N
p . (6.12)

The next step is to find the minimal energy configurations. By performing a Legendre

transformation, the hamiltonian can be written as:

H =

∫

S2×S1×S̃1

dΩ2 dy dz

∫

dx1

[

Fx0x1z
∂L

∂Fx0x1z
− L

]

, (6.13)

and after some calculations, using the quantization conditions (6.8), (6.11), one can see

that the hamiltonian takes the simple form

H = 2gs

√
α′NTM2e

2φ0

∫

dx1

√

1+α′gsN(∂x1
ψ)2

√

e−4φ0

(

πq

gsN

)2

+sin4 ψ+C2
p(ψ) . (6.14)

The constant ψ configurations that minimize the energy are given by:
(

∂H

∂ψ

)

ψ=const
∼ sin ψ cos ψ + Cp(ψ) = 0. (6.15)

Defining the function

∆(ψ) = sin ψ cos ψ + Cp(ψ), (6.16)

the energy is minimized for ψ = ψ̄p such that

∆(ψ̄p) = 0 , (6.17)

that is

ψ̄p = π
p

N
, 0 ≤ p < N. (6.18)

The energy of these configurations is (from eq. (6.14))

Hp,q =

∫

dx1Tp,q , (6.19)

with

Tp,q = 2 gs

√
α′ NTM2e

2φ0

√

e−4φ0

(

πq

gsN

)2

+ sin2 ψ̄p (6.20)

being the tension of the (p, q)-string we were looking for.
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7. The conifold and SYM on the cylinder

In the previous sections we have studied N = 1 SYM theory on the cylinder starting from

the MN supergravity solution. We want to show now that the same could have been done

for the Klebanov-Strassler solution [9]. For the gauge theory dual, we assume that the deep

infrared of that solution describes pure N = 1 super Yang-Mills theory with a single SU(M)

gauge group. Even if this is the case only in the limit of small ’t Hooft coupling [9, 33],

which is the opposite limit of supergravity, there are convincing arguments stating that the

physics is quite similar also in the (large ’t Hooft coupling) supergravity limit [39].

Considering the KS solution and making a T-duality along one spatial flat direction

(call it z) transverse to the cone, we end up in the type IIA geometry corresponding to

having M fractional D2-branes smeared along the z circle. In this case there are no specific

problems with the dilaton and the solution can be conveniently studied directly in the type

IIA set-up. It is:

ds2 = h−1/2
(

− dx2
0 + dx2

1 + dx2
2

)

+ h1/2
(

dz2 + ds2
6

)

,

e2φ = h1/2 ,

C(3) =
h−1

gs
dx0 ∧ dx1 ∧ dx2 + C(2) ∧ dz ,

B2, (7.1)

where ds2
6 is the metric of the deformed conifold, C(2) is the type IIB RR potential satisfying

dC(2) = F(3) and all the forms and functions (B2, F(3) and h(τ)) are the ones in the KS

solution [9].

For the gauge theory analysis of the coupling constant one would need to know the

precise form of the worldvolume action of fractional Dp-branes in the conifold geometry.

Lacking this knowledge, the best one can do is to borrow the known N = 2 orbifold

fractional branes action. This assumption is sensible because the conifold theory can be

related to the N = 2 orbifold one, as it has been first derived in [40].5

Accordingly, we assume that a generic fractional Dp-brane in the conifold geometry is

described by the natural generalization of the worldvolume action of the orbifold [42, 43].

This assumption works in many cases. As first noted in [9], in the p = 3 case, it gives the

expected result for the coupling constant. It reproduces also the right U(1)R anomaly. As

a further check, one can compute the instantonic action in the type IIB original solution.

Identifying the instanton with a fractional D(-1)-brane [9], one gets the expected result.

In the T-dual type IIA solution (7.1) the instanton becomes a fractional D0-brane

extending in the z direction. Analogously to what happens in the MN solution, as described

in section 5, in this cylindrical case the instanton decomposes in instanton partons (the

open fractional D0-branes) suspending between two adjacent fractional D2-branes. In the

background of each of those “fractional instantons” there are again two fermionic 0-modes

(the goldstinos of the broken supersymmetries): they generate a superpotential of the

form (5.6). Now the action in the exponent is the action of the open fractional D0-brane.

5See [41] for a different way of connecting the two theories.
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To write explicitly the superpotential, we need to consider that the boundary of a fractional

D0-brane sources a scalar potential on the fractional D2-brane. The minimal coupling of

the RR 1-form potential to the fractional D0-brane is
∫

Σz

C1(1 + b), (7.2)

where b is the scalar field resulting from the integral of the NS-NS B2 field on the two cycle

of the conifold geometry. We see that under a gauge transformation C1 → C1 +dΛ, (7.2) is

not invariant if the line Σz has a boundary, like the open D0-branes we are considering. To

preserve gauge invariance one must introduce the coupling of the boundary of the D0-brane

with the worldvolume scalar potential of the host D2-brane. In this case the boundary of

the D0 couples to a worldvolume scalar (Σ) on the D2: (7.2) is replaced by

∫

Σz

(C1 − dΣ)(1 + b). (7.3)

Gauge invariance is therefore restored if the gauge transformation of C1 is accompanied

by Σ → Σ + Λ. This scalar field Σ is naturally interpreted as the scalar field dual to the

vector one on the D3 worldvolume.

Considering (5.6) in the case of fractional D0-branes, one gets the following superpo-

tential:

W = M3

(

N−1
∑

i=1

e
− 8π2

g2
YM

Φi

+ e
− 8π2

g2
YM

R√
α′ +

PN−1

i=1

8π2

g2
YM

Φi

)

, (7.4)

in perfect agreement with field theory and the MN case of the previous section.

8. Conclusions

In this paper we have investigated the stringy dual description of N = 1 SYM theory on the

cylinder (R1,2 × S1). This model is interesting because it contains a rich non-perturbative

dynamics that can be succesfully described. This makes it appealing for cosmological

applications as well.

To describe its UV properties, we have derived an action written in terms of a complex

scalar whose imaginary part is dual to the three dimensional vector field. This is better

done in eleven dimensions and, as we show, it is a quite general feature of three dimensional

gauge theories with a gravity dual. After the identification of the field theory monopole

configurations (the four-dimensional “fractional instantons”), we have derived the form of

the non-perturbatively generated superpotential. This superpotential is responsible for the

generation of a mass gap, the breaking of chiral symmetry and the appearance of domain

walls. We have moved then to compute the (p, q)-string tension. We have got a formula

that is also valid for the Kaluza-Klein reduced three dimensional theory.

The cylindrical geometry we consider may also be relevant in the KKLT set-up [6].

More specifically, the fractional instantons we find can source the second term in the

superpotential

W = W0 + Aeiaρ, (8.1)
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where the first term is generated by fluxes, A and a are constants and ρ is a volume

modulus. This is crucial for the issue of stabilizing the Kähler moduli. Moreover, in

the scenario of [7], the (p, q) strings we described are good candidates to be cosmological

strings.

As future developments, one can try to face unsolved problems using the eleven di-

mensional background we have presented here. For example, domain walls seem to have a

better description in this geometry (this is not surprising as they are very sensitive to the

topology of spacetime). In particular, one could try to find the proper M5-brane configura-

tion dual to them and apply the formalism of section 6 to compute their tension. One could

also try to follow the line of [44] and see how the inclusion of flavors modifies the geometry.

In this geometry, it should be possible to derive the superpotential corresponding to the

Affleck-Dine-Seiberg [45] one in the purely flat four dimensional theory.

Acknowledgments

We are grateful to D. Areán, J. D. Edelstein, Javier Más, C. Núñez and Alfonso V. Ra-
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A. Wrapped D4-branes

To test the generality of the results of section 4, we apply our method to another case of

branes wrapped on a cycle, namely the case of D4-branes wrapped on a two cycle. The

geometry of the solution is the one discussed in [19]. They studied the solution in the IIA

context, where a necessary tool to find the proper Hyper-Kähler moduli space is to dualize

by hand the three dimensional vector field into a scalar (as it is usual in these cases). We

want to see if this dual scalar field emerges again naturally from the degrees of freedom of

the M5-brane. In eleven dimensions, the metric of the solution in [19] becomes:6

ds2
11 = e4/3Φ

[

dx2
1,2 + ZR2

0(dθ̃2 + sin2 θ̃dφ̃2) + dy2
]

+ (A.1)

e−8/3Φ

[

dr2 + r2(dθ2 + sin2 θdφ2) +
1

Z

(

dσ2 + σ2(dψ + cos θ̃dφ̃)2
)

]

.

It is easy to see that probing the solution in a supersymmetric way requires to restrict to

the σ = 0 subspace of this solution. On this subspace the RR three form potential reads:

C3 =
R3

A

8
cos θ sin θ̃dθ̃ ∧ dφ̃ ∧ dφ . (A.2)

The solution is given in terms of the following parameter and functions (we write here their

expression at σ = 0):

eΦ = H(r)−1/4 , Z =

(

1 − R3
A

8R2
0

1

r

)

, RA = 2
√

α′(πgsN)1/3 . (A.3)

6We refer the reader to [19] for the notation adopted here.
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This geometry corresponds to M5-branes extending along the three dimensional Minkowski

spacetime and wrapping the compact cycle parameterized by θ̃, φ̃, y. To probe this

geometry with a similar M5-brane, we make the following ansatz for the worldvolume two

form:

A(2) = 4π2gs

√
α′α′Σdθ̃ ∧ sin θ̃dφ̃ , (A.4)

where the fields are normalized as in (4.6) and we omit the dualization term. Then, at

leading order in α′, we have

H̃ab = i
4π2gsα

′3/2

ZR2
0

e−2/3Φǫabc

(

∂cΣ − N

4π
cos θ∂cφ

)

, (A.5)

where we define, consistently with [19], the dual three dimensional Yang-Mills coupling

constant as

1

g2
YM

=
R2

0

2πgs

√
α′

Z(r). (A.6)

We can now expand the M5-brane action at quadratic order in α′ and integrate it along

the compact directions. We get:

SM5 =

∫

d3x

[

1

g2
YM

(

dµ2 + µ2(dθ2 + sin2 θdφ2)
)

+ g2
YM

(

dΣ − N

4π
cos θdφ

)2
]

, (A.7)

where we have used the obvious radius-energy relation r = 2πα′µ. This is the expected

perturbative quantum metric on the moduli space (the Taub-NUT metric).

B. Supergravity solution in eleven dimensions

For the metric given in equation (3.1), let us consider the orthogonal frame

exi

= e2/3φadxi , (i = 0, 1, 2) eρ = e2/3φa(α′gsN)1/2dρ ,

ey = e2/3φady , ez = e−4/3φadz ,

e1 = e2/3φa(α′gsN)1/2ehdθ1 , e2 = e2/3φa(α′gsN)1/2eh sin θ1dφ1 ,

eî = e2/3φa

(

α′gsN

4

)1/2

(ωi − Ai) , (i = 1, 2, 3) . (B.1)

We want to find the explicit form of the Killing spinor and the projections it has to

satisfy to solve the eleven dimensional BPS equation. Such equation can be written as

follows:

∇M ǫ +
1

288

(

Γ NPQR
M GNPQR − 8ΓPQRGMPQR

)

ǫ = 0 , (B.2)

where M,N,P . . . are curved indices in eleven dimensions, ∇ is the covariant derivative

∇M = ∂M +
1

4
wab

MΓab , (B.3)
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wab
M are the components of the spin connection (a, b, . . . are flat indices) and G stands for

the four form field strength, G = dC(3). In the above frame (B.1), G is written as

G = e−2/3φa(α′gsN)−1/2

[

− 2e1̂ ∧ e2̂ ∧ e3̂ − a′

2
e−heρ ∧ e1 ∧ e1̂ +

a′

2
e−heρ ∧ e2 ∧ e2̂ +

+
(1 − a2)

2
e−2he1 ∧ e2 ∧ e3̂

]

∧ ez . (B.4)

With straightforward computations it is possible to see that the Killing spinor satisfying

the BPS equation (B.2) is:

ǫ = e−α/2Γ
22̂eφa/3η , (B.5)

where α is the angle determined in [46]:

cosα =
e2h − 1

4(a2 − 1)

ρ
, sin α = −aeh

ρ
, (B.6)

and η is a constant spinor satisfying the projections:

Γ12η = Γ1̂2̂η , Γρ1̂2̂3̂η = η , Γzη = η . (B.7)

The number of real components of the Killing spinor preserved by this solution is four.

Accordingly, the dual field theory is N = 1 SYM in four dimensions.

C. Kappa symmetry analysis

We look for a supersymmetric configuration of an M2-brane in the background described

above. Being the analysis pretty close to the one in [46], we refer the interested reader to

that paper for generalities about the Kappa symmetry analysis and its application to this

case.

Consider an Euclidean M2-brane wrapping the 3-cycle S2 × S1, where the S2 is the

one defined in (2.12) and the S1 is parameterized by z. Without worldvolume gauge fields,

the Kappa symmetry matrix acting on the Killing spinor reduces to:

Γκ ǫ =
1

[e2h + 1
4(a − 1)2]

([

e2h − 1

4
(a − 1)2

]

Γ12 − eh(a − 1)Γ12̂

)

ǫ , (C.1)

where ǫ is the Killing spinor satisfying the projections (B.7). The case we are studing is a

particular case of the general embedding proposed in section 3 of [46], where a D5-brane

in type IIB supergravity is considered. Although we are now dealing with an M2-brane

in eleven dimensional supergravity, we can apply the conclusion of their analysis to our

case and say that this configuration satisfies Kappa symmetry only asymptotically (ρ → ∞
limit). The only difference is that we have to impose an additional projection (commuting

with the ones in (B.7)):

Γ12 ǫ = ǫ . (C.2)

This further projection breaks half of the supersymmetries of the background: two real

supercharges are preserved.
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